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Present-day people from England and Wales harbour more ancestry derived from
Early European Farmers (EEF) than people of the Early Bronze Age'. To understand
this, we generated genome-wide data from 793 individuals, increasing data from the
Middle to Late Bronze and Iron Age in Britain by 12-fold, and Westernand Central

Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern
Britain (England and Wales) but not northern Britain (Scotland) due to incorporation
of migrants who arrived at this time and over previous centuries, and who were
genetically most similar to ancient individuals from France. These migrants
contributed about half the ancestry of Iron Age people of England and Wales, thereby
creating a plausible vector for the spread of early Celtic languages into Britain. These
patterns are part of abroader trend of EEF ancestry becoming more similar across
central and western Europe in the Middle to Late Bronze Age, coincident with
archaeological evidence of intensified culturalexchange? . There was comparatively
less gene flow from continental Europe duringthe Iron Age, and Britain’s independent
genetictrajectoryisalsoreflectedin therise of the allele conferring lactase
persistence to ~-50% by this time compared to ~7% in central Europe where it rose
rapidly in frequency only a millennium later. This suggests that dairy products were
used in qualitatively different ways in Britain and in central Europe over this period.

Whole genome ancient DNA studies have shown that the first Neo-
lithic farmers of the island of Great Britain (hereafter Britain) who
lived 3950-2450 BCE derived roughly 80% of their ancestry from Early
European Farmers (EEF) who originated in Anatolia more than two
millennia earlier, and 20% from Mesolithic hunter-gatherers (West-
ern European Hunter-Gatherers: WHG) with whom they mixed in
continental Europe, indicating that local WHG in Britain contributed
negligibly to later populations”®. This ancestry profile remained sta-
ble for about a millennium and a half. From around 2450 BCE, there
was another substantial migration (Box 1) into Britain (minimum
90% ancestry from the new migrants) coinciding with the spread
of Bell Beaker traditions from continental Europe which brought a
third major component: ‘Steppeancestry’ derived originally from
people living on the Pontic-Caspian Steppe ~3000 BCE®. In the original
study® reporting this ancestry shift in Britain, no significant aver-
age change in the proportionof EEF ancestry was detected from the
Chalcolithic/Early Bronze Age (C/EBA; 2450-1550 BCE), through the
Middle Bronze Age (MBA; 1550-1150 BCE) and Late Bronze Age (LBA;
1150-750 BCE), to the pre-Roman Iron Age (IA; 750 BCE-43 CE). How-
ever, that study contained little data after 1300 BCE (Fig. 1). Today,
however, EEF ancestry is significantly higher on average in southern
Britain thanin northern Britain, raising the question of when this
increase occurred"®. Therise in EEF ancestry cannot be explained by
migration from northern continental Europe in the early medieval
period, as early medieval migrants harboured less EEF ancestry than
in Bronze Age Britain'® and hence would have decreased EEF ancestry
instead of increasing it as we observe'.

We generated genome-wide ancient DNA data from 416 previ-
ously unanalysed individuals from Britain, increasing the number
of pre-Roman individuals to 598 and multiplying by 28-fold the
number from the combined period of the LBA and IA (from 13 to

365) (Fig.1, Supplementary Information section 1, Supplementary
Table 1, Methods). We also report data from ancient individuals
mostly dating to the LBA and IA from the Czech Republic (n=160),
Hungary (n=54), France (n=52), the Netherlands (n=28), Slova-
kia (n=25), Croatia (n=21), Slovenia (n=14), Spain (n=10), Serbia
(n=8) and Austria (n=3). We increased data quality on 33 previ-
ously published individuals (Supplementary Table 1). To gener-
ate these data (Methods), we prepared powder from bones and
teeth, extracted DNA, and generated 1020 sequencing libraries
all pretreated with uracil-DNA glycosylase to reduce character-
istic cytosine-to-thymine errors of ancient DNA (Supplementary
Table 2). We enriched libraries in solution for a targeted set of
more than 1.2 million single nucleotide polymorphisms (SNPs),
sequenced them, then co-analysed with previously reported data
(Supplementary Table 3). We clustered by time and geography
aided by 123 newly reported radiocarbon dates (Supplementary
Table 4). We separately labelled individuals that were significantly
different in ancestry from the majority cluster from each time
period and region (Supplementary Information section 2, Supple-
mentary Table 5). Although we report data from all individuals, we
removed a subset from the main analysis: those with evidence of
contamination, those with arate of damage in the final nucleotide
lower than the typical range for authentic ancient DNA, those that
were first degree relatives of other higher coverage individuals
in the dataset, or those with too little data for accurate ancestry
inference (<30,000 single nucleotide polymorphisms (SNPs)
covered at least once) (Supplementary Table 5, Methods). Fig.1
shows amap of analysed individuals. We identified 123 individuals
from 48 families as related (within the third degree) to at least
one other newly reported individual in the dataset (Supplemen-
tary Table 6).
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British ancient DNA time transect

We computed f,-statistics with Block Jackknife standard errors™
between all pairs of temporal groupings of individuals in Britain, test-
ing for differences in the rate of allele sharing (genetic drift) with the
two major source populations (Steppe and EEF). We document a sig-
nificant increase in the degree of allele sharing with EEF populations
in England and Wales over the M-LBA and into the IA (Extended Data
Table1). To estimate the proportions of EEF, Steppe, and WHG ancestry,
we used gpAdm™, which takes advantage of the fact that if a “Target”
population is a mixture of “Source” populations for which we have
close surrogatesinour dataset, we can compute all possible f,-statistics
relatingthe “Targets” and “Sources” to a set of chosen outgroups, and
then use gpAdm to find the values of the mixture coefficients ag,
Asepper AN A, thatfitall the statistics, while also providing a p-value
for whether the “Target” population canin fact be modelled as a mixture
of close relatives of the “Sources”. We carefully chose our set of
“Sources” and “Outgroups” to provide much more accurate inferences
than previous gpAdm setups due to their large sample sizes and the
high degree of leverage they provide for teasing apart the three major
components of European ancestry (Supplementary Information sec-
tion 2). Our proxies for the “Sources” are 22 early Balkan Neolithic
farmers with minimal hunter-gatherer admixture (EEF), 20 Yamnaya
and Poltavka pastoralists (Steppe), and 18 Mesolithic hunter-gatherers
fromacross Western Europe (WHG). Our “Outgroups” are close genetic
cousins of the three Sources—24 Anatolian Neolithicindividuals related
to EEF, 19 Afanasievo individuals related to Yamnaya Steppe pastoral-
ists, and 41 hunter-gatherers largely from the Danubian Iron Gates
related to WHG—and apool of 9 ancient sub-Saharan Africans processed
using the same in-solution enrichment technology and without evi-
dence of West Eurasian-related admixture.

EEF-related ancestryincreased in England and Wales from 31.0+0.5%
in the C/EBA (n=69), to 34.7+0.6% in the MBA (n=26), to 36.1+0.6%in
the LBA (n=23), and stabilized at 37.9+0.4%in the IA (n=273) (here and
below, we quote one standard error). There was no significant changein
Scotland (Fig.2and Extended Data Table1). Increased EEF ancestry was
widespreadinsouthernBritainby theIA, with point estimates ranging
from 36.0-38.8% across eight regions of England (Wales sample sizes
are too small to provide accurate inference) (Table 1, Extended Data
Table 2). We considered the possibility that therise in EEF ancestry in
southern Britain was due to a resurgence of archaeologically less vis-
ible populations with more ancestry frompeople living in Britainin the
Neolithic, which we missed either due to geographic biasesin sampling,
or variation across cultural contextsin the way groups treated their
dead for example through cremation. However, models of IA people
of England and Wales as a mixture of groups in Neolithic and C/EBA
Britain failed at high significance (Extended Data Fig.1). Thisis due to
IA populations in Britain sharing alleles with some Neolithic popula-
tions in continental Europe that was not present in early Neolithic or
C/EBA groups in Britain (Supplementary Information section 3). The
most plausible explanation for these patterns is migration of people
carrying this distinctive ancestry into southern Britain in the M-LBA.

We modelledancestry ineachindividual, labelling significant ances-
try outliers relative to most individuals of their period. We highlight
key observations (Fig. 3, Extended Data Fig. 2).

First, replicating previous results®®, we infer a cluster of Neolithic
individuals from western Scotland with high WHG admixture, likely
reflecting unions between recent migrants from Europe and descend-
ants of local Mesolithic groups in Britain (Extended Data Fig. 2).

Second, we infer high variability in EEF ancestry inthe C/EBA, before
EEF ancestry becamerelatively homogeneous after ~2000 BCE® (Fig. 3).
Thisisapparent at Amesbury Downwhere EEF ancestry in some burials
issignificantly below the average 0f29.9+0.4% (e.g. 12417 at 22.2+1.8%),
plausibly reflecting Beaker-period migrants who mixed with local Neo-
lithic farmersto produce theintermediate EEF ancestry that prevailed
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by the end of the EBA. Others are above the group average including
individual 114200 at 45.3+2.2%, known as the “Amesbury Archer,” who
was buried inthe most well-furnished grave recovered from the Stone-
henge mortuarylandscape and had anisotopic profile indicating that
he spent parts of his childhood outside Britain, possibly in the Alps®.
The factthat the Archer was amigrant but had toolittle Steppe ances-
try to be from the population that drove Steppe ancestry to the level
observed in C/EBA Britain, shows that Beaker-associated migrants to
Britain were not genetically homogeneous. The ‘Companion’ (12565),a
burial found next to the Archer whose isotopic profile like most others
at the site was consistent with alocal upbringing, was not an ancestry
outlier (32.7+3.0% EEF; Fig. 3). The Archer and the Companionshared
arare tarsal morphology and similar grave goods, hypothesized to
reflect close genetic relationship (Supplementary Information sec-
tion4)*, but our results rule out first- or second-degree relatedness.

Third, we observe four outliers with high EEF ancestry inthe late MBA
and LBAwho are candidates for being first generation migrants or the
offspring of recent migrants, all of whom were buried in Kent in the
southeasternmost part of Britain. The earlier two are from Margetts Pit:
47.8+1.8% inindividual 113716 (1391-1129 calBCE) and 43.6+1.8%in 113617
(1214-1052 calBCE). The latter two are from Cliffs End Farm: 43.2+2.0%
inindividual 114865 (967-811 calBCE) and 43.4+1.8%in 114861 (912-808
calBCE). We considered the possibility that we are observing the effect
of ashort burst of migration in the MBA which included the Margetts
Pit outliers, followed by co-existence of separate communities with
different EEF ancestry for atleast a couple of hundred years, including
the Cliffs End Farm outliers. However, strontium and oxygen isotope
analyses identify multiple individuals of non-local origin at Cliffs End
Farm®, including outlier 114861, suggesting that this was not a single
mass migration but instead a stream of migrants over hundreds of
years (Supplementary Information section 5).

Fourth, the fraction of individuals whose ancestry is significantly
different from the main group is 17% over the first part of the C/EBA
(2450-1800BCE), 4% from the end of the EBA through the beginning of
the MBA (1800-1300 BCE), 17% from the end of the MBA through the LBA
(1300-750 BCE), and 3% through the IA (Fig. 3). This is consistent with
two periods of relatively high rates of migration into southern Britain
inthe Chalcolithicand thenagainin the M-LBA. We considered the pos-
sibility that our failure to observe a high rate of outliers in the IA com-
pared with the preceding period was because ancestry had, by this time,
homogenized to some extent between Britain and continental regions,
which could make outliers more difficult to detect. However, average
EEF ancestry in Britainin the IA was 37.9+0.4%, substantially different
from much of contemporary Western and Central Europe—52.6+0.6%
inlberia, 49.8+0.4% in Austria, Hungary, and Slovenia, 45.4+0.5% in
the Czech Republic, Slovakia and Germany, 45.6+0.5% in France and
Switzerland, and 34.4+1.2% in the Netherlands (Fig. 4a)—which would
have made the majority of migrants from these regions detectable
giventhe <2% standard errors in most of our ancestry estimates (Sup-
plementary Table 5). Our sampling from western France and Belgium
is poor, and it is possible that EEF ancestry proportions there were
similar to Britain, so we cannot rule out migration from this region in
thelA. Nevertheless, our results are consistent with reduced migration
from continental Europe and suggest a substantial degree of genetic
isolation of Britain from much of continental Europe during the IA™.

Demographic change in Britainis also evident from another aspect
of the data: the rate of runs of homozygosity (ROH), which can occur
when a person’s parents are closely related. The larger the pool of
people from whichindividuals draw their mates, the less likely it is for
parents to be closely related, and thus we can average the number of
4-8 centimorgan (cM) ROH segments to estimate the effective size of
the pool of people within which people were mating in the ~600 year
period prior to the time when the analysed individuals lived"”. We find
that the size of the mating pool increased by roughly four-fold from
the Neolithic to the IA (Extended Data Fig. 3), but this should not be



interpreted as an estimate of census population size changes over
this period as mating pool sizes are also affected by changing social
customs. First, if the distance over which people ranged to find their
mates was higher in some cultural contexts than in others, it would
cause mating pool sizes to be different even if there was no difference
in population densities; for example, mating pool size may have been
less than the island-wide population size if members of communi-
ties mixed little with their neighbours', or larger if individuals mated
notonly with people outside their local communities but also outside
Britain. Second, we have gapsin sampling, especially at the end of the
Neolithic (roughly 3000-2450 BCE), which means that demographic
processesinsuch periods may be obscured. Third, due to the method
effectively averaging mating pool size over centuries, this analysis may
alsofailto detect population declines over the space of afew decades.

British change in European context

We co-analysed our ancient DNA time transect in Britain alongside
European transects (Fig. 4a, Supplementary Table 5 and 7). Average
EEF ancestry increased in North-Central Europe (Czech Republic/
Slovakia/Germany) just as in Britain, with the first individuals with
greatly increased EEF ancestry associated with artefacts traditionally
classified as part of the Knoviz culture, acomponent of the broader
Urnfield cultural complex (1300-800 BCE) that spread across much
of Central Europe. This is particularly striking as the Knoviz individu-
alsare froma population that is genetically similar to the Margetts Pit
and Cliffs End Farm outliers (Supplementary Information section 6).
Laterindividualsin North-Central Europe have similar EEF proportions,
consistent with substantial continuity through the LBA-IA.InMBA and
LBA France/Switzerland and South-Central Europe (Austria/Hungary/
Slovenia) there was little change in average EEF ancestry, while EEF
ancestry decreased in MBA and LBA Iberia (Spain/Portugal). There
are two exceptions to this broad pattern of ancestry convergence.in
Europe—Scotland inthe far north, and Sardinia in the far south—both
of which have extreme and relatively unchanging proportions of EEF
ancestry in this period (Supplementary Table 7).

This study multiplies by almost eight-fold the number of IAindividu-
alswith genome-wide datafrom Western and Central Europe (from 80
to 624; Supplementary Table 5), making it possible to accurately track
the frequency change of genetic variants into the IA (Supplementary
Table 8). Variants associated with light skin pigmentation at SLC4542
became substantially more common throughout Europe in the IA.
We obtain an unexpected result for the derived allele at MCM6-LCT
rs4988235whichis associated with lactase persistence into adulthood
(Extended Data Fig. 4). Previous analyses found that its frequency in
the IA in sampled parts of continental Europe was a small fraction of
its present-day incidence'®; We document this at high precisionin our
datasetinlIberia whereitwas~9% compared to~40% today, and in Cen-
tral Europe (Austria, Hungary, Slovenia, Czech Republic, Slovakia and
Germany) where it was ~7% compared to ~48% today. However, in 1A
Britain its frequency was 50% compared to the current 73%, showing
that intense selection to increase the frequency of this allele acted
roughly amillennium earlier in Britain than it did in multiple parts
of continental Europe (Fig. 4b, Extended Data Fig. 4). We find no evi-
dence that the frequency rise in Britain was due to M-LBA migration:
the Margetts Pit and Cliffs End Farm outliers did not carry the allele,
and most of the rise in Britain occurred after the M-LBA (Fig. 4b, Sup-
plementary Table 8). This suggests that dairy products were consumed
inaqualitatively different way or were economically more important
in LBA-IA Britain thanin Central Europe.

Continental sources of M-LBA migration

Theancestry change in Britain during the M-LBA was more subtle than
those associated with the Neolithic and Beaker-period migrations. In

England and Wales, allele frequency differentiation between the Neo-
lithicand C/EBA was F~0.02, but between the C/EBA and the IA it was
anorder of magnitude smaller at F;~0.002 (Extended Data Table1). The
pre-LBA population in Britainalso made a substantial genetic contribu-
tionto thelA population, in contrast to the two earlier major Holocene
ancestry shifts®’. Evidence for a substantial contribution from the C/
EBA population to later populations also comes from Y chromosome
haplogroup R1b-P312/L21/M529 (R1blala2ala2cl), whichis present at
89+5%insampled individuals from C/EBA Britain and is nearly absent
in available ancient DNA data from C/EBA Europe (Supplementary
Table 9). The haplogroup remained more common in Britain thanin
continental Europeinevery later period, and continues to be adistinc-
tive feature of the British isles as its frequency in Britain and Ireland
today (14-71% depending on region®) is far higher than anywhere else
in continental Europe (Extended Data Fig. 5).

To gain insight into the possible sources of the M-LBA migrants to
southern Britain, we fit the pooled IA individuals from England and
Wales in gpAdm as a mixture of the main C/EBA cluster, and a second
source. We tested 65 second sources—63 from continental Europe
and 2 from Britain (the Margetts Pit outlier pool, and the Cliffs End
Farm outlier pool)—and found that 20 fit at p>0.05. We then pooled
the genetically similar Margetts Pit and Cliffs End Farm individuals
and performed further testing with more stringent gpAdm setups,
leaving eight second sources that consistently fit well with modest
standard errors (Table 2, Supplementary Information section 6). The
Margetts Pit and Cliffs End Farm pool fit as contributing 49.4+3.0% of
the ancestry of IA people from southern Britain. Even omitting repre-
sentatives of the putative source population living in Britain itself, we
infer large genetic turnovers, as the seven continental populations that
fit as sources are estimated to contribute 24-69% ancestry. Although
only1/5" of the continental candidate populations we tested are from
France, 6/7™s of the fitting populations are: four from Occitanie in
southern France (600-200 BCE), two from Grand Est in northeastern
France (800-200 BCE), and one from Spain (a~600 BCE group). These
fitting second sources all significantly post-date the ancestry change in
Britain and hence cannot be the true sources; however, they are plausi-
bly descended from earlier local populations. An originin Franceis also
suggested by the fact that all of the high EEF outliers in Britain in the
M-LBA, and all of the1000-875 BCE individuals that track the ramp-up
of EEF ancestry from MBA tolAlevels, are from Kentin far southeastern
Britain (Extended Data Fig. 6). The migrant stream began admixing
more broadly through southern Britain by the second half of the LBA,
asindividual 112624 from Blackberry Field, Potterne in Wiltshire, dated
to0 950-750 BCE, had an EEF proportion of 38.1+2.0% consistent with
the level thatbecame ubiquitous insouthern Britain by the beginning
of the IA (Extended Data Fig. 3). However, as this is the only non-Kent
datapoint from the second half of the LBA, more sampling is needed
to understand the geographic and temporal course of the spread of
this ancestry.

Regional variationinIron Age Britain

Estimates of Margetts Pit and Cliffs End Farm-like ancestry in southern
Britain range from 35+5% in northern England to 56+5% in south-central
England (Table 1, Extended Data Table 2). The IA was a period when
material culture was increasingly regionalin character’, and our results
show that this was accompanied by subtle genetic structure, although
withoutsouthernBritainthereisno clear correlation of these admixture
proportions tolatitude (Table 1). We highlight the case of East Yorkshire,
where most individuals are from ‘Arras Culture’ contexts comprising
square-ditched barrows and occasional chariot burials. Similarities
to funerary traditions of IA societies in the Paris Basin and Ardennes/
Champagne regions have led to suggestions that East Yorkshire was
influenced by direct migration from continental Europe in the IA%.
Our estimate of the Margetts Pit/Cliffs End Farm ancestry source for
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East Yorkshire burialsis 44+4% (Table1), typical for middle latitudes of
Britain at this time (East Angliais similar). However, the East Yorkshire
burials are distinctive in another way: regional differentiation in IA
Britain, as measured by F;, is higher between East Yorkshire and other
groups than it is between any other pair of IA populations in England
and Wales in our dataset (Extended Data Table 2). Comparative data
fromthe continent could make it possible to determine ifthisis due to
isolation of IA East Yorkshire from the rest of southern Britain, or later
streams of migration specifically affecting East Yorkshire.

Archaeological and linguistic context

The period from 1500-1150 BCE has long been recognized as a time
when cultural connections between Britain and regions of continental
Europe intensified, and when societies on both sides of the Channel
shared cultural features including domestic pottery, metalwork and
ritual depositional practices® . From around 750 BCE there is more
limited archaeological evidence of contact between Britain and the
continent, and our genetic findings concur in showing that, by the
beginning of the IA, thereis little evidence of demographically signifi-
cantmigrationinto Britain. Our findings do not establish whether the
population movements we infer were a cause or consequence of M-LBA
exchange networks, but they do suggest that interactions between
local populations of Britain and new migrants bringing ideas from
continental Europe could have been a vector for some of the cultural
change we seein M-LBA England and Wales. Western and Central France
aremuch more poorly represented by available genome-wide ancient
DNA data than neighboring regions of Europe, and thus we cannot at
present testifthe gene flow between the tworegionsin this period was
largely unidirectional.

Population movements are often a significant driver of cultural
change, including in the languages people speak. While periods of
intense migration such as the one we infer here do not always resultin
language shifts', genetic evidence of significant migration is impor-
tant because it documents demographic processes that are plausible
conduits for language spread®. Several researchers have interpreted
linguistic dataas providing evidence for early Celtic languages spread-
inginto Britainfrom France at the end of the Bronze Age orinthe early
IA?>%, Our identification of substantial migration into Britain from
sources that best fit populations in France provides an independent
line of evidence in support of this, and points to the M-LBA as a prime
candidate for the period of this language spread. While the lack of evi-
dence for M-LBA EEF ancestry change in Scotland could be interpreted
as weakening the case that Celtic language spread into Britain at this
time, a later arrival of Celtic languages in Scotland is consistent with
evidence that non-Celtic and Celtic languages coexisted thereinto the
first millennium CE**. Our finding of a decrease of EEF ancestry in Ibe-
ria, where the proportion was relatively highin the EBA, and aroughly
simultaneous increase in Britain where the proportion was relatively
lowinthe EBA (Fig. 4a), could,in theory, reflect a Celtic-speaking group
of people withintermediate EEF ancestry spreading into bothregions,
although such a simple model cannot explain all the north-south ances-
try convergence in Europe (Supplementary Information section 7).
Nevertheless, the fact that the Margetts Pit and Cliffs End Farm outliers
are genetically very similar to the Knoviz culture sample from Cen-
tral Europe (Supplementary Information section 6) is striking in light
of the fact that some scholars have hypothesized Central European
Urnfield groups like Knoviz to have links to Celtic language spread®.
Our failure to find evidence of large-scale migration into Britain from
continental Europe in the IA suggests that, if Celtic language spread
was driven by large-scale movement of people, it is unlikely to have
occurred at this time. The adoption in IA Britain of cultural practices
originating in continental Europe—particularly those linked to the La
Tene tradition®*—was also evidently independent of large-scale popula-
tion movements, although there certainly were smaller movements,
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attested by individual IA outliers with high EEF ancestry such as those
at Thame or Winnall Down (Fig. 3).

Animportant direction for future work is to generate new ancient
DNA datafrom continental contexts especially in central and western
France—and also Ireland—to test the alternative scenarios of popu-
lation history consistent with the observations in this study, and to
develop theoriesintegrating the genetic findings within archaeologi-
cal frameworks.
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ancestry increased in southern Britain beginning with the Margetts Pit MBA
outliersbut hardly in the north. Estimates from gpAdm are binned into four

8 | Nature | www.nature.com

Jackknife. Sample sizesinthe C-EBA/MBA/LBA/IA are 69/26/23/273 in England
and Wales and 10/5/4/18 in Scotland.
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Fig.3|By-individual analysis of the southern Britain time transect.

(A) Estimates of EEF ancestry and one standard error for allindividuals fitting a
three-way admixture model (EEF + WHG + Yamnaya) at p>0.01 using gpAdm; we
restrict to 2450 BCE-43 CE using the best date estimate from Supplementary
Table 5. Mostindividuals are in blue, while significant outliers at the ancestry
tailsareinred (outliersare identified as p<0.005based on agpWave test from
the main cluster from their period and |Z|>3 for a difference in EEF proportion,
or p<0.1and|Z|>3.5). We use a horizontal bar to show one standard error for the
date (Supplementary Table 5). The black line shows population-wide EEF
ancestry at each time obtained by weighting each individual’s EEF estimate by
theinverse square of their standard error and the probability that their date
fallsat that time (based on the mean and standard errorin Supplementary

LBA 1A

Table 5 assuming normality; we filter out individuals with standard errors >120
years). Theincorporationofincreased EEF ancestry into the majority of
individuals occurred ~1000-875BCE. (B) Proportion of outliers over 300-year
sliding windows centered on each point, based on randomly sampling dates of
allindividuals 100 times assuming normality and their mean and standard
deviationinSupplementary Table 5 (removingindividuals with EEF errors
>0.022and date errors >120 years). Major epochs of migrationinto Britainare
periods with elevated proportions of outliers: between 2450-1800 BCE (17%
outliers) and1300-750 BCE (17% again). The fact that there was an elevated rate
of outliers prior to the 1000-875BCE population-widerise in EEF ancestry may

reflectadelay between the time of arrival of migrants and their full
incorporationinto the population.
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Fig.4|Genetic changeinBritaininthe context of Europe-wide trends.

(A) Eightancient DNA time transects for up to four periods, plotting the mean
ofthe EEF inference on the y-axis and on the x-axis using the average of dates of
individualsin periods defined for each regionasin Supplementary Table 5.
Samplesizes used to compute each pointare givenin Supplementary Table 7.
Dotted lines connecting points should notbeinterpreted asimplying asmooth
changeover time and instead are meant to help in visual discernment of which
groups of points come from the same time transects. (B) The allele conferring
lactase persistence experienced its major rise about a frequency millennium
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earlierinBritain thanin Central Europe suggesting different selection regimes
and possibly cultural differences in the use of dairy products in the two regions
inthelA.Thisanalysisbased onimputeddataincludes 459 ancientindividuals
from Britainand 468 from Central Europe (Czech Republic, Slovakia, Croatia,
Hungary, Austria, Germany and Slovenia) (we then co-analyzed with
present-day individuals;Methods). Each vertical bar represents the derived
allele frequency for eachindividualwith values [0, 0.5, 1]; we use jitter on the
x-axis, and show inshading theinferred 95% confidence interval for the allele
frequency ateachtimepoint.



Table 1| Regional variation in ancestry in Iron Age Britain

Lati-tude  Modeling Ancestry With Pre-Bronze Age Sources With Middle to Late Bronze Age Sources
Region N P WHG EEF Steppe P Continental
Scotland
Orkney 59 0.22 14.2£11% 34.1£1.2% 51.6£1.6% 0.10 20+9%
West 4 58 012 13.0+.8% 32.3+1.0% 54.741.2% 0.19 8+7%
Southeast 12 56 0.67 12.1+.6% 33.9+.7% 54.0+.9% 0.39 16+5%
England
North 10 54 0.35 13.4+.6% 36.3+.8% 50.3+1.0% 0.76 35+5%
E. Yorkshire 47 54 0.61 13.2+.4% 37.0+.5% 49.8+.6% 0.86 44+4%
Midlands 18 53 0.66 12.6+.5% 36.0+.6% 51.4+.8% 0.77 36+4%
Southwest 84 53 0.30 13.7+.4% 38.7+.4% 47.6+.6% 0.56 55+5%
East Anglia 21 52 0.44 13.56+.5% 37.0+.5% 49.5+7% 0.52 A4£4%
Southcentral 38 52 0.32 13.9+.4% 38.8+.5% 47.2+.6% 0.35 56+5%
Southeast 3 51 0.13 13.9+.5% 38.3+.5% 47.8+.6% 0.40 52+5%
Cornwall 16 50 0.40 13.5+.5% 36.4+.7% 50.1+.8% 0.64 39+5%
Wales
North 1 53 0.20 121+1.6% 34.7£2.0% 53.2+2.5% 0.53 22+14%
South 2 51 0.66 14.2+1.2% 38.6+1.5% 47.2+1.8% 0.57 53+11%

Notes: Regions are ordered first by large grouping (Scotland-England-Wales), then latitude. We separate “England East Yorkshire” from “England North” because of distinctive cultural context in
the IA (Arras). For the final two columns, we use as the Britain source Britain_C.EBA and as the continental source Margetts Pit / Cliffs End Farm pool.
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Table 2| Fitting proxies for the new ancestry source in Iron

Age southern Britain

Proxies for source ofthe newancestry N Meandate p-value Ancestry
Margetts Pit and Cliffs End FarmM-LBA 4 1036 BCE  0.07 49.4+3.0%
Spain |A Tartessian 2 629BCE 0.16 23.7+1.2%
France GrandEst IA1 (shotgun data) 5 620BCE 1.00 48.9+3.7%
France Occitanie IA2 (high EEF 1 450BCE 0.85 25.8+1.7%
subgroup, shotgun data)

France Occitanie IA2 (high WHG 1 450BCE 0.39 335+41%
subgroup, shotgun data)

France Occitanie IA2 (shotgun data) 400 BCE 0.25 53.3+5.4%
France Occitanie IA2 (low Steppe 363 BCE 0.33 36.5+2.6%
subgroup, shotgun data)

France GrandEst I1A2 12 250BCE 0.09 68.5+3.3%

Note: We fit the pooled IA individuals from England and Wales as a mixture of the pooled
C/EBA individuals from England and Wales and a proxy for the new ancestry source. The
p-value is from gpAdm’s test of fit of each population as a two-way admixture with no

correction for multiple hypothesis testing. These results represent eight of the 65 lines in

Supplementary Information section 6, Table S6.1
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Box 1

Reconciling archaeological and
genetic understandings of
“migration”

“Migration” is a central concept in both population genetics

and archaeology, but its meaning has evolved in divergent

ways in the course of the development of these disciplines?.
Population geneticists use “migration” to refer to any movement

of genetic material from one region to another which would

see even low-level symmetrical exchanges of mates between
adjacent communities as representing migration, while
archaeologists restrict its use to processes that result in significant
demographic change due to permanent translocation of

people from one region to another?. In European archaeology,
discussions of prehistoric migrations have become fraught

due to the ways in which theories of migration were exploited
politically in the early-mid twentieth century, when movement of
large numbers of people over short times was sometimes argued
to be a primary mechanism for the spread of ethnic groups and
archaeological reconstructions of such events were used to justify
claims on territory?. Because of this, some archaeologists prefer
to set a high bar for theorizing migration, for example by restricting
its use to cases where there is evidence for organized movements
of people over a short time. However, this can make it difficult to
recognize the important effects that large-scale movements of
people had in prehistory?, such as the westward movement of
people from the Steppe beginning in the third millennium BCE that
genetic data have shown contributed much of the ancestry of later
Europeans®3°. We use the term “migration” here with intention,
because the movement of people into Britain we document was
demographically transformative. We emphasize that our findings
are not sufficient to prove mass movement over a short time;
indeed our radiocarbon dating and isotopic evidence shows that at
least some of the migration was drawn out over hundreds of years.
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Methods

Ancient DNA laboratory work

Allhuman skeletons analysed in this study were sampled with written
permission of the stewards of the skeletons and every individual is
represented by at least one co-author. Researchers who wish to obtain
furtherinformationabout specific individuals should write to the cor-
responding authors and/or the authors who provided the archaeo-
logical contextualization for those individuals givenin Supplementary
Information section 1). In dedicated clean rooms at Harvard Medical
School, the University of Vienna, the Natural History Museum in Lon-
don, and the University of Huddersfield, as well as during sampling
trips, we obtained powder from ancient bones and teeth using methods
including sandblasting, drilling and milling®*2, We extracted DNA using
avariety of methods®*, and prepared double- or single-stranded
libraries treated with the enzyme Uracil DNA Glycosylase to reduce
characteristic errors associated with ancient DNA degradation® %, We
enriched these sequences manually orin multiplex using automated liq-
uid handlers for sequences overlapping the mitochondrial genome***
as well as about 1.24 million single nucleotide polymorphisms*:. We
pooled enriched libraries which we had marked with unique 7-base pair
internal barcodes and/or 7-to 8-base pairindices and sequenced onIllu-
minaNextSeq500 or HiSeqX10 instruments using paired-end reads of
either 76 base pairs or 101 base pairsinlength (Supplementary Table 2).

Bioinformatic analysis

After trimming barcodes and adapters®’, we merged read pairs with
at least 15 base pairs of overlap allowing no more than one mismatch
if base quality was at least 20, or up to three mismatches if base quali-
ties were <20; we chose the nucleotide of the higher quality in case
of a conflict while setting the local base quality to the minimum of
the two (for these steps we used a custom toolkit at https://github.
com/DReichLab/ADNA-Tools). We aligned merged sequences to the
mitochondrial genome RSRS* or the human genome hgl9 (GRCh37,
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/) using
the samse command** of BWA version 0.7.15with parameters-n 0.01,-0
2,and-116500. After identifying PCR duplicates by tagging all aligned
sequences with the same start and stop positions and orientationandin
some casesin-line barcodes using Picard MarkDuplicates (http://broad-
institute.Github.io/picard/), and restricting to sequences that spanned
atleast 30 base pairs, we selected a single copy of each such sequence
that had the highest base quality score. For subsequent analysis, we
trimmed the last 2 bases of each sequence for UDG-treated libraries
and thelast 5 for non-UDG-treated libraries to reduce the effects of
characteristic errors associated with ancient DNA degradation. We
built mitochondrial consensus sequences, determined haplogroups
using HaploGrep2 version2.1.15* and Phylotree version 17, and esti-
mated the match rate to the consensus sequence using contamMix
version 1.0-12** when coverage was at least two-fold. To represent the
nuclear data, we randomly sampled a single sequence covering each
of the 1.24 million SNP targets, and estimated coverage based on the
subset of these targeted SNPs on the autosomes. We used ANGSD ver-
sion 0.923 to estimate contamination based on polymorphismonthe
X chromosome in'males with at least 200 SNPs covered twice (males
should be non-polymorphic if their data are uncontaminated)*. We
automatically determined Y chromosome haplogroups using both
targeted SNPs and off-target sequences aligning tothe Y chromosome
based on comparisons to the Y chromosome phylogenetic tree from
Yfull version 8.09 (https://www.yfull.com/), providing two alterna-
tive notations for Y chromosome haplogroups: the first using a label
based on the terminal mutation, and the second describing all associ-
ated branches of the Y chromosome tree based on the notation of the
International Society of Genetic Genealogy (ISOGG) database version
15.73. (http://www.isogg.org). We manually checked the Y chromosome
haplogroups for the males in the Britain time transect.

Determination of ancient DNA authenticity

We determined ancient DNA authenticity based on five criteria. First,
we required that the lower bound of the 95% confidence interval for
contamination from ANGSD (if we were able to compute it) was <1%.
Second, we required that the upper bound of the 95% confidence
interval for match rate to mitochondrial consensus sequence (if we
were able to compute it) was >95%. Third, we required that the aver-
age rate of cytosine-to-thymine errors at the terminal nucleotide for
all sequences passing filters was >3% for double-stranded partially
UDG-treated libraries® and >10% for single-stranded USER-treated
libraries and double-stranded non-UDG-treated libraries (the latter
libraries are all from previously published data that we reanalysed
here)*s. Fourth, we required the ratio of sequences mappingto the Y
chromosome to the sum of sequences mappingtothe Xand Y chromo-
some for the1240K data to be less than 3% (consistent with afemale) or
>35% (consistent withamale). Fifth, toreportanindividual we required
the number of SNPs covered at least once to be atleast 5,000 (for most
actual population genetic analyses, we required at least 30,000). For
some individuals with evidence of contamination, we analysed only
sequences with terminal damage to enrich for genuine ancient DNA,
allowing us to study more individuals*. We do notinclude in our main
analyses data from 71individuals that failed our authenticity criteria
(marked as “QUESTIONABLE” in Supplementary Table1); however, we
publish the data as part of this study as aresource.

Approach tochronological uncertainty

Werestricted individuals for which we newly report data to those whose
date estimate (mean of the posterior distribution from radiocarbon
carbon dating, or midpoint of the archaeological context date) is older
than 43 CE based on information we had available as of July 12021.
For the great majority of individuals, assignments to chronological
periods did not change subsequently. However, there were 23 excep-
tions, and we study these as part of their original analysis groupings
(Supplementary Information section 8).

Population genetic analyses

We detected Runs of Homozygosity (ROH) using hapROH version 0.3".
We computed f,-statistics and Fs; and carried out gpWave and gpAdm
analyses in ADMIXTOOLS version 7.0.2, computing standard errors with
aBlockJackknife®. For modeling ancestry with pre-Bronze Age sources
in gpAdm, we employ the outgroup populations (OldAfrica, WHGA,
Balkan_N, OldSteppe) using the assignment of individuals to groups as
in Supplementary Table 3. For modeling ancestry with M-LBA sources,
we use the outgroups (OldAfrica, OldSteppe, Turkey N, Netherlands_C.
EBA, Poland_Globular_ Amphora, Spain.Portugal_4425.t0.3800BP,
CzechRepublic.Slovakia.Germany_3800.t0.2700BP, Sardinia_8100.
t0.4100BP, CzechRepublic.Slovakia.Germany_4465.t0.3800.BP, Sar-
dinia_4100.t0.2700BP, and Spain.Portugal_6500.t0.4425BP), using the
assignment of individuals to groups specified in either Supplementary
Table 3 or in Supplementary Table 5.

Relative detection
Weinferred relatives up to the third degree as previously described®".

Allele frequency estimates of variants with functional importance
We clustered individuals into the temporal groupings specified in Sup-
plementary Table 5. To estimate the allele frequency of agiven SNPina
particular group for Supplementary Table 8, we used sequence counts
at each SNP position in each individual and a maximum likelihood
approach®?. We obtained confidence intervals using the Agresti-Coull
method implemented in the binom.confint function of the R-package
binom. For the imputation-based methodology for studying the tra-
jectory of the lactase persistence allele (Fig. 4b), we used GLIMPSE*
to impute diploid genotype posterior probabilities (GP) based on


https://github.com/DReichLab/ADNA-Tools
https://github.com/DReichLab/ADNA-Tools
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
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1000 Genomes Projects haplotypes®, restricting to samples with
max(GP)>0.9 for this SNP. To represent allele frequencies in modern
Britain we use a pool 0of 190 CEU and GBR individuals from the 1000
Genomes Project®®, and to represent modern Central Europe we used
288 individuals from the modern Czech Republic®. We visualise the
frequency trajectory of the lactase persistence allele at SNP rs4988235
in Figure 4b using the GaussianProcessRegressor function from the
Scikit-learnlibrary in Python with parameter alpha=0.1and 1*Ration-
alQuadratic kernel with parameter length_scale_bounds=(1,1000).

Radiocarbon dating

We carried out Accelerator Mass Spectrometry (AMS) dating at a vari-
ety of laboratories (n=81 at SUERC, n=40 at PSUAMS, n=1 at BRAMS,
and n=1at Poz); Supplementary Table 4 gives specifies the methods
we and also gives the detailed measurements. We refer readersto the
individual labs for the experimental protocols. We calibrated all dates
using OxCal 4.4.2% and IntCal20%*.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Theraw dataare available as aligned sequences (bam files) through the
European Nucleotide Archive under accession number PRJEB47891.
The newly generated genotype data are available as aSupplementary
data file. The previously published data co-analysed with our newly
reported data can be obtained as described in the original publica-
tions, which are all referenced in Supplementary Table 3; acompiled
dataset that includes the merged genotypes used in this paper is
available as the Allen Ancient DNA Resource at https://reich.hms.
harvard.edu/allen-ancient-dna-resourceaadr-downloadable-genotypes-
present-day-and-ancient-dna-data. Any other relevant dataare avail-
able from the corresponding authors upon reasonable request.

Code availability
This study uses publicly available software which we fully reference.
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Extended DataFig.1|Post-MBA Britain was not a mix of earlier British
populations. (A) gpAdm p-values for modeling British groups as a mix of
Neolithic and Chalcolithic/EBA populations from England and Wales or
Scotland (outgroups OldAfrica, OldSteppe, Turkey N, CzechRepublic.
Slovakia.Germany_3800.t0.2700BP, Netherlands_C.EBA, Poland_Globular_
Amphora, Spain.Portugal_4425.t0.3800BP, CzechRepublic.Slovakia.
Germany_4465.t0.3800.BP, Sardinia_4100.t0.2700BP, Sardinia_8100.
t0.4100BP, Spain.Portugal_6500.t0.4425BP). We highlight p<0.05 (yellow) or
p<0.005 (red). Both sources and target populations in this analysis remove
outlierindividuals (“Filter 2” in Supplementary Table 5); we obtain qualitatively
similar results when outlier individuals are not removed (not shown). (B) To
obtaininsightinto the source ofthe new ancestry in BritaininthelA, we
computed f,(England.and.Wales_IA, a(England.and.Wales_N) + (1-a)(England.

Proportion of EBA

Wales_C.EBA); R1,R2) for different (R1,R2) population pairs. If England.and.
Wales_IAisasimple mixture of England.and.Wales_N and England.and.
Wales_C.EBA without additional ancestry, then for some mixture proportion
thestatistic willbe consistent with zero for all (R1, R2 pairs). When (R1,R2) =
(OldAfrica, OldSteppe) feasible Z-scores (Z1in the plot) are observed when
a~0.85, showing that ~85% ancestry from England.and.Wales_C.EBA ancestry is
needed to contribute the observed proportion of Steppe ancestry in England.
and.Wales_IA.However, when (R1,R2) is (Balkan_N, Sardinian_8100.
t0.4100BP), we get infeasible Z-scores (Z2) of <-6 across the range where Z1is
remotely feasible. Thus, Iron Age people from England and Wales must have
ancestry from anadditional population deeply related to Sardinian Early
Neolithic groups.
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Extended DataFig. 2| By-individual analysis of the British time transect.
Version of Figure 3 with the time transect extended into the Neolithic, and
addinginindividuals from Scotland. We plot mean estimates of EEF ancestry
and one standard error bars from a Block Jackknife for allindividualsin the time
transect that pass basic quality control, that fit to a three-way admixture model
(EEF + WHG + Yamnaya) at p>0.01using gpAdm, and for the Neolithic period
that fit atwo-way admixture model (EEF + WHG) at p>0.01. Individuals that fit
the main cluster of their time are shownin blue (southern Britain) and green

(Scotland), while red and orange respectively show outliers at the ancestry tails
(identified either as p<0.005 based on a gpWavetest from the main cluster of
individuals from their period and |Z|>3 fora difference in their EEF ancestry
proportion fromthe period, or alternatively p<0.1and |Z|>3.5). The averages
for the main clustersinboth southernBritain and Scotlandineach
archaeological period (Neolithic, C/EBA,MBA, LBA and IA) are shownin dashed
lines.
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Extended DataFig. 3| Changesinthesize of the mate pool over time. Close
kinunions were rare at all periods as reflected in the paucity of individuals
harbouring >50 centimorgans (cM) of their genome in runs of homozygosity
(ROH) of >12cM (red dotsin top panel). The number of ROH of size 4-8 cM per
individual (bottom panel) reflects the rate at which distant relatives have
children, providinginformation about the sizes of mate pools (Ne) averaged
over the hundreds of years prior towhenindividuals lived; thus, the broad
trend of an approximately four-fold drop in Ne from the Neolithic to the IAis

robust, but we may miss fluctuations onatime scale of centuries. The thick
black linesrepresent the mean Ne obtained by fittingamathematical model of
Gaussian process witha 600-year smoothingkernel (gray area 95% confidence
interval). The horizontal grey lines show period averages from maximum
likelihood which can differ from the mean obtained through the mathematical
modelingif the counts do not confirm wellto a Gaussian process. We interrupt
thefittedline for periods with toolittle data for accurateinference (<10
individualsina400-yearinterval centered on the point).



(A) LCT - Britain (B) LCT - Austria-H i zech Republic-Siovaki (C) LCT - France-Switzerland (D) LCT - Spain-Portugal

10 10 100 100
g
&
8050 0s0 0s0 os0
- (R R ey 1 N
-2 e 2
e l Y w e : S
N CEBA MBA LBA 1A PostlA 8100.10.4750BP  4750.t0.2700BP 1A PostlA 8100.10.4470BP 4470.t0.2700BP 1A 8100.10.4425BP 4425 to 2700BP 1A PostiA
A S - R P o s - e o 0198 n o R o b
(E) SLC45A2 - Britain (F) SLC45A2 - Austria-Hungary-Slovenia-Czech Republic-Slovakia-Germany (G) SLC45A2 - France-Switzerland (H) SLC45A2 - Spain-Portugal
ol T ] 100 100
o7s o7s * o7s o7s
5 +
fos os0 * 080 080
) }
000 ™ ™ oo
N CEBA MBA LBA 1A PostlA 8100.t0.4750BP  4750.t0.2700BP 1A PostIA 8100.t0.4470BP 4470.10.27008P 1A 8100.10.4425BP  4425.t0.2700BP 1A PostlA
AT A A P o ne% el s v P A A i i
Extended DataFig.4|Frequency change over time at two phenotypically pigmentation allele at rs16891982. In Britain therise in frequency of the lactase

importantalleles. Present-day frequencies are shown by the red dashed lines; persistenceallele occurred earlier thanin Central Europe. This analysis is based
samplesizes foreachepocharelabeled at the bottom of each plot; andweshow  ondirect observation ofalleles; imputation results are qualitatively consistent
means along with 95% confidence intervals (Supplementary Table 8). (Figure 4b).

(A-D/Top) Lactase persistence allele at rs4988235. (E-H/Bottom) Light skin
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Extended DataFig.5|Y chromosomehaplogroup frequency changes over
time. Estimated frequency of the characteristically British Y chromosome
haplogroup R1b-P3121L21/M529inallindividuals for which we are able to make a
determination and which are not first-degree relatives of a higher coverage
individualinthe dataset.Samplesizes for each epoch arelabeled at the bottom,
and we show means and one standard error bars from abinominal distribution.
The frequency increases significantly from -0% in the whole island Neolithic, to
89+4% in the wholeisland C/EBA. It declines non-significantly to 79+9%in the

England and Wales England and Wales
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West & Wales
(n=224)

Center &
East (n=414)

England & Wales
Modern
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MBA and LBA (from this time onward restricting to England and Wales because
ofthe autosomalevidence ofachangein EEF ancestryin the south but notthe
north). It further declinesto 68+4%inthelA, asignificantreductionrelative to
the C/EBA (P=0.014 by a two-sided chi-square contingency test). There is
additional reduction from this time to the present, when the proportionis
43+3% in Walesand the west of England (P=5x10"¢ for areductionrelative to the
I1A), and14+2% in the center and east of England (P=3x10*for areduction
relative tothelA).
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Extended DataFig. 6 | Version of Fig. 3a contrasting Kent to the rest of
southernBritain. We show the period 2450-1BCE. Each point correspondstoa
singleindividual and we show means and one standard error bars from a Block
Jackknife. All the high EEF outliers at the M-LBA are from Kent—the part of the
island closest to France—and in addition all the individuals from 1000-875BCE
fromthe group of samples showing the ramp-up from MBA toIAlevels of EEF
ancestry are from Kent (5 from Cliffs End Farm and 3 from East Kent Access
Road). This suggests the possibility that this small region was the gateway for
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migration to Britainat the M-LBA. Further sampling from the rest of Britain at
the M-LBAiscriticalin order to understand the dynamics of how this ancestry
spread more broadly. However, the fact that only sample from the second half
ofthe LBA thatis not from Kent—112624 from Blackberry Field in Potternein
Wiltshire at 950-750 BCE—already has a proportion of EEF ancestry typical of
thelAinsouthernBritain—suggests that this ancestry began spreading more
broadly by thesecond half of the LBA.
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Extended Data Table 1| Ancestry change over time in Britain
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We pool all individuals from each period and region removing those failing gpAdm modeling at p<0.01 according to Supplementary Table 5. In the left columns are gpAdm estimates of
ancestry based on pre-Bronze Age source populations for each group. Below diagonal are Z-scores from f,(Row population, Column population; Turkey_N, OldSteppe) (highlighted in red if
|Z|>3). Above diagonal are inbreeding-corrected Fg; values (highlighted in yellow if F5;>0.005).



Extended Data Table 2 | Fine genetic structure in Iron Age Britain
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England Southeast 36| 0.13|139% 383% 47.8% | 05% 0.5% 0.6% 5.4 7.2 2.8 -3.8 -3.2 -2.5 -3.4 0.0005 n/a 0.0008
England Southwest 84| 0.30 | 13.7% 387% 47.6% | 04% 04% 0.6% 5.6 8.4 313 -4.5 -4.3 -3.3 -3.7 -3.4 0.0009
land t | 38| 0.32 [ 13.9% 38.8% 47.2% | 0.4% 0.5% 0.6% 5.6 7.5 33 -4.6 -3.6 -2.7 -3.0 -3.3 0.0 -0.2
Wales North 1| 0.20|12.1% 347% 53.2% | 1.6% 2.0% 2.5% 0.8 11 2.0 19 2.0 25 29 31 3.6 3.6
Wales South 2| 0.66|14.2% 386% 47.2% | 1.2% 1.5% 1.8% -2.7 -3.1 -1.5 -1.6 -1.3 -1.2 -1.0 -0.9 0.0 0.4

This is an expanded version of Table 1including not just ancestry estimates for each group but also pairwise population comparisons. We pool all individuals fromeach period and region
removing those failing gpAdm modeling at p<0.01 according to Supplementary Table 5. In the left columns are gpAdm estimates of ancestry for each group. Below diagonal are Z-scores from
f,(Row population, Column population; Turkey_N, OldSteppe) (highlighted in red if |Z|>3). Above diagonal are inbreeding-corrected Fq; values (highlighted in yellow if F5;>0.0025).
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Software and code

Policy information about availability of computer code

Data collection  BWA version 0.7.15 and other bioinformatics tools and data workflows (https://github.com/DReichLab/ADNA-Tools and https://github.com/
DReichLab/adna-workflow)

Data analysis hapROH version 0.3, Phylotree version 17, Yfull version 8.09, HaploGrep2 version 2.1.15, contamMix version 1.0-12, ANGSD version 0.923,
ADMIXTOOLS version 7.0.2, R-package binom version 1.1-1, OxCal version 4.4.2, IntCal20, ISOGG version 15.73, pmdtools
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The raw data are available as aligned sequences (bam files) through the European Nucleotide Archive under accession number PRJIEB47891. The newly generated
genotype data are available as a Supplementary data file. The previously published data co-analysed with our newly reported data can be obtained as described in
the original publications, which are all referenced in Supplementary Table 3; a compiled dataset that includes the merged genotypes used in this paper is available
as the Allen Ancient DNA Resource at https://reich.hms.harvard.edu/allen-ancient-dna-resourceaadr-downloadable-genotypes-present-day-and-ancient-dna-data.
Any other relevant data are available from the corresponding authors upon reasonable request.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

We report new ancient DNA data from my contexts where ancient DNA has not previously been reported. Although even more powerful
inferences could have been made if sample sizes were larger, we make the inferences we can with these samples.

We excluded ancient samples from this study if they did not fall within its temporal scope based on the information we had available as of
July 12021 (4000 BCE - 43 CE in Britain, 5500 BCE - 43 CE on the continent). We also excluded samples that did not fall within the geographic
scope of the study (Britain and western and Central Europe). After collecting genetic data, we excluded individuals from the analysis dataset
as described in the Methods section entitled "Determination of ancient DNA authenticity." Specifically: "We determined ancient DNA
authenticity based on five criteria. First, we required that the lower bound of the 95% confidence interval for contamination from ANGSD (if
we were able to compute it) was <1%. Second, we required that the upper bound of the 95% confidence interval for match rate to
mitochondrial consensus sequence (if we were able to compute it) was >95%. Third, we required that the average rate of cytosine-to-thymine
errors at the terminal nucleotide for all sequences passing filters was >3% for double-stranded partially UDG-treated libraries39 and >10% for
single-stranded USER-treated libraries and double-stranded non-UDG-treated libraries (the latter libraries are all from previously published
data that we reanalysed here)48. Fourth, we required the ratio of sequences mapping to the Y chromosome to the sum of sequences
mapping to the X and Y chromosome for the 1240K data to be less than 3% (consistent with a female) or >35% (consistent with a male). Fifth,
to report an individual we required the number of SNPs covered at least once to be at least 5,000 (for most actual population genetic
analyses, we required at least 30,000). For some individuals with evidence of contamination, we analysed only sequences with terminal
damage to enrich for genuine ancient DNA using pmdtools, allowing us to study more individuals49. We do not include in our main analyses
data from 71 individuals that failed our authenticity criteria (marked as “QUESTIONABLE” in Supplementary Table 1); however, we publish the
data as part of this study as a resource. A total of 97 of the 1020 libraries newly reported for this study are also indicated as “QUESTIONABLE”
by these criteria."

Only a single library can be made from each extract aliquot so no replication from the same extract is possible. However, the data from the
1020 newly reported libraries came from 826 distinct individuals. For the individuals with more than one library, we had internal replication
confirming that the libraries were from the same individuals. Another measure of replication also derives from the fact that the ancestry
distributions in individuals from the same periods tended to be very similar. As a result of this, key findings in this study are not dependent on
single samples. Thus, key findings such as the increase in EEF ancestry in the LBA and IA in Britain, or in the millennium-earlier rise in
frequency of the allele conferring lactase persistence in Britain than in Central Europe, are not dependent on single samples.

Historical studies are retrospective rather than prospective -- and the actual trajectory of human history has occurred only once -- so
randomization of the data into independent processes is not possible. The text contains a caveat about possible biases due to non-random
sampling. Specifically, we write: "We considered the possibility that the rise in EEF ancestry in southern Britain was due to a resurgence of
archaeologically less visible populations with more ancestry from people living in Britain in the Neolithic, which we could have missed either
due to geographic biases in sampling, or variation across cultural contexts in the way groups treated their dead for example through use of
cremation. However, models of IA populations of England and Wales as a mixture of groups in Neolithic and C/EBA Britain failed at high
significance (Extended Data Fig. 1) due to IA populations sharing more affinity to with some Neolithic populations from continental Europe
than they did with Neolithic groups in Britain, implying the arrival of ancestry not present in earlier periods (Supplementary Information
section 3). The most plausible explanation is migration into southern Britain in the M-LBA.”

Co-analysis of the genetic and archaeological data was central to the study, so we could not be blind to the sample identity.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

|:| Antibodies IZI D ChlIP-seq

|:| Eukaryotic cell lines IZI D Flow cytometry

IZ Palaeontology and archaeology IZ |:| MRI-based neuroimaging

[ ] Animals and other organisms
D Human research participants
D Clinical data

D Dual use research of concern
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Palaeontology and Archaeology

Specimen provenance We describe the provenance of all archaeological specifmens in Supplementary Table 1 and Supplementary Information section 1.

Specimen deposition The bone and tooth parts that remain after analysis for ancient DNA are under the stewardship of the archaeologists and cultural
institutions from which they were sampled. At present, they are either already returned to the sample stewards or they are stored on
long-term loan at the ancient DNA laboratories where they were analysed. They can be re-examined upon request to the sample
stewards. Researchers who wish to replicate analyses from this study or gather new data on the libraries generated for this study are
welcome to make a request for aliquots of those libraries to corresponding author David Reich who will fulfill all reasonable requests.

Dating methods We carried out Accelerator Mass Spectrometry (AMS) radiocarbon dating at a variety of laboratories (n=81 at SUERC, n=40 at
PSUAMS, n=1 at BRAMS, and n=1 at Poz). The details of the experimental process used for dating are presented in Supplementary
Table 4 along with quality control measurements and specification of the protocol type used (XAD amino acids or >30kDa gelatin).
We refer readers to the individual laboratories for the experimental protocols. We calibrated all dates using OxCal 4.4.2 and IntCal20.

IXI Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight All human skeletons analysed in this study were sampled with written permission of the stewards of the skeletons and every
individual is represented by at least one co-author. Researchers who wish to obtain further information about specific individuals
should write to the corresponding authors and/or the authors who provided the archaeological contextualisation for those
individuals whose names are specified in Supplementary Material section 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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